Dynamics of the stochastic chemostat with Monod-Haldane response function
نویسندگان
چکیده
منابع مشابه
Hopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response
In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...
متن کاملAnalysis of an Impulsive Predator-Prey System with Monod-Haldane Functional Response and Seasonal Effects
For a class of impulsive predator-prey systems with Monod-Haldane functional response and seasonal effects, we investigate conditions for the local and global stabilities of prey-free solutions and for the permanence of the system by using the Flquet theory of impulsive differential equations and comparison techniques. In addition, we numerically analyze the phenomena caused by seasonal effects...
متن کاملStochastic models of the chemostat
We consider the modeling of the dynamics of the chemostat at its very source. The chemostat is classically represented as a system of ordinary differential equations. Our goal is to establish a stochastic model that is valid at the scale immediately preceding the one corresponding to the deterministic model. At a microscopic scale we present a pure jump stochastic model that gives rise, at the ...
متن کاملStabilization of a chemostat model with Haldane growth functions and a delay in the measurements
The stabilization of equilibria in chemostats with measurement delays is a complex and challenging problem, and is of significant ongoing interest in bioengineering and population dynamics. In this paper, we solve an output feedback stabilization problem for chemostat models having two species, one limiting substrate, and either Haldane or Monod growth functions. Our feedback stabilizers depend...
متن کاملStochastic functional population dynamics with jumps
In this paper we use a class of stochastic functional Kolmogorov-type model with jumps to describe the evolutions of population dynamics. By constructing a special Lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2017
ISSN: 2045-2322
DOI: 10.1038/s41598-017-13294-3